Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters










Publication year range
1.
J Appl Toxicol ; 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38400677

ABSTRACT

Isobavachalcone (IBC) is a flavonoid component derived from Psoraleae Fructus that can increase skin pigmentation and treat vitiligo. However, IBC has been reported to be hepatotoxic. Current studies on IBC hepatotoxicity are mostly on normal organisms but lack studies on hepatotoxicity in patients. This study established the depigmented zebrafish model by using phenylthiourea (PTU) and investigated the difference in hepatotoxicity between normal and depigmented zebrafish caused by IBC and the underlying mechanism. Morphological, histological, and ultrastructural examination and RT-qPCR verification were used to evaluate the effects of IBC on the livers of zebrafish larvae. IBC significantly decreased liver volume, altered lipid metabolism, and induced pathological and ultrastructural changes in the livers of zebrafish with depigmentation compared with normal zebrafish. The RNA-sequencing and RT-qPCR results showed that the difference in hepatotoxicity between normal and depigmented zebrafish caused by IBC was closely related to the calcium signaling pathway, lipid decomposition and metabolism, and oxidative stress. This work delved into the mechanism of the enhanced IBC-induced hepatotoxicity in depigmented zebrafish and provided a new insight into the hepatotoxicity of IBC.

2.
BMC Complement Med Ther ; 24(1): 15, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38169375

ABSTRACT

AIM OF THE STUDY: Cardiovascular disease (CVD) seriously endangers human health and is characterized by high mortality and disability. The effectiveness of Dracocephalum moldavica L. in the treatment of CVD has been proven by clinical practice. However, the mechanism by which DML can treat CVD has not been systematically determined. MATERIALS AND METHODS: The active compounds in DML were screened by literature mining and pharmacokinetic analysis. Cytoscape software was used to construct the target-disease interaction network of DML in the treatment of CVD. Gene ontology and signalling pathway enrichment analyses were performed. The key target pathway network of DML compounds was constructed and verified by pharmacological experiments in vitro. A hydrogen glucose deprivation/reoxygenation model was established in H9c2 cells using hypoxia and glucose deprivation for 9 h combined with reoxygenation for 2 h. The model simulated myocardial ischaemic reperfusion injury to investigate the effects of total flavonoids of Cymbidium on cell viability, myocardial injury markers, oxidative stress levels, and reactive oxygen radical levels. Western blot analysis was used to examine NOX-4, Bcl-2/Bax, and PGC-1α protein expression. RESULTS: Twenty-seven active components were screened, and 59 potential drug targets for the treatment of CVD were obtained. Through the compound-target interaction network and the target-disease interaction network, the key targets and key signalling pathways, such as NOX-4, Bcl-2/Bax and PGC-1α, were obtained. TFDM significantly decreased LDH and MDA levels and the production of ROS and increased SOD activity levels in the context of OGD/R injury. Further studies indicated that NOX-4 and Bax protein levels and the p-P38 MAPK/P38 MAPK andp-Erk1/2/Erk1/2 ratios were suppressed by TFDM. The protein expression of Bcl-2 and PGC-1α was increased by TFDM. CONCLUSIONS: Our results showed that DML had multicomponent, multitarget and multichannel characteristics in the treatment of CVD. The mechanism may be associated with the following signalling pathways: 1) the NOX-4/ROS/p38 MAPK signalling pathway, which inhibits inflammation and reactive oxygen species (ROS) production, and 2) the Bcl-2/Bax and AMPK/SIRT1/PGC-1α signalling pathways, which inhibit apoptosis.


Subject(s)
Cardiovascular Diseases , Flavonoids , Humans , Flavonoids/pharmacology , bcl-2-Associated X Protein , Cardiovascular Diseases/drug therapy , Reactive Oxygen Species , Network Pharmacology , Proto-Oncogene Proteins c-bcl-2 , Glucose , p38 Mitogen-Activated Protein Kinases
4.
PLoS One ; 18(7): e0289118, 2023.
Article in English | MEDLINE | ID: mdl-37494353

ABSTRACT

BACKGROUND AND OBJECTIVE: Cerebral ischemia-reperfusion injury (CIRI) is a major injury that seriously endangers human health and is characterized by high mortality and high disability. The total flavonoid extract of Dracocephalum moldavica L.(TFDM) in the treatment of CIRI has been proved by clinical practice. But the mechanism for the treatment of CIRI by TFDM has not been systematically revealed. STUDY DESIGN AND METHODS: The active compounds contained in TFDM were screened by literature mining and pharmacokinetic parameters, and the targets related to CIRI were collected by searching Drugbank, Genecards and OMIM databases. Cytoscape software was used to construct the protein interaction network of TFDM for the prevention and treatment of CIRI. Geneontology and signal pathway enrichment were analyzed. The key target pathway network of TFDM compounds was constructed and verified by pharmacological experiment in vitro. RESULTS: 21 active components were screened, 158 potential drug targets for the prevention and treatment of CIRI were obtained, 53 main targets were further screened in the protein-protein interaction network, and 106 signal pathways, 76 biological processes, 26 cell components and 50 molecular functions were enriched (P<0.05). Through the compound-target-pathway network, the key compounds that play a role in the prevention and treatment of CIRI, such as acacetin, apigenin and other flavonoids, as well as the corresponding key targets and key signal pathways, such as AKT1, SRC and EGFR were obtained. TFDM significantly decreased LDH, MDA levels and increased the NO activity levels in CIRI. Further studies have shown that TFDM increases the number of SRC proteins, and TFDM also increases p-AKT/ AKT. Molecular docking results showed that acacetin-7-O (- 6''-acetyl) -glucopyranoside, acacetin7-O-ß-D-glucopyranoside, apigenin-7-O-ß-D-galactoside respectively had good affinity for SRC protein. Acacetin-7-O (- 6''-acetyl) -glucopyranoside,acacetin-7-O-ß-D-glucuronide, acacetin7-O-ß-D-glucopyranoside had good affinity for AKT1 protein, respectively. CONCLUSION: Our research showed that TFDM had the characteristics of multi-component, multi-target and multi-channel in the treatment of CIRI. The potential mechanism may be associated with the following signaling pathways:1) the signaling pathways of VEGF/SRC, which promote angiogenesis, 2) the signaling pathways of PI3K/AKT, which inhibit apoptosis, and 3) acacetin-7-O (- 6''-acetyl) -glucopyranoside is expected to be used as a candidate monomer component for natural drugs for further development.


Subject(s)
Brain Ischemia , Drugs, Chinese Herbal , Humans , Flavonoids/pharmacology , Flavonoids/therapeutic use , Network Pharmacology , Apigenin , Molecular Docking Simulation , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt
5.
Phytomedicine ; 109: 154577, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36610166

ABSTRACT

BACKGROUND: The huge global burden of atherosclerotic cardiovascular diseases (CVDs) represents an urgent unmet need for the development of novel therapeutics. Dracocephalum moldavica L. has been used as a traditional Uygur medicine to treat various CVDs for centuries. Tilianin is a major flavonoid component of D. moldavica L. and has potential for preventing atherosclerosis. However, the molecular mechanisms that tilianin attenuate atherosclerosis are far from fully understood. PURPOSES: The purpose of this study is to investigate the efficiency and underlying mechanisms of tilianin in controlling lipid profile and preventing atherogenesis. METHODS: The lipid-lowering effect of tilianin was evaluated in C57BL/6 and ApoE-/- mice by systematically determining serum biochemical parameters. The effects of tilianin on the atherosclerotic lesion were observed in aortic roots and whole aortas of ApoE-/- mice with oil red O staining. Caecal content from ApoE-/- mice were collected for 16S rRNA gene sequence analysis to assess the structure of the gut microbiota. The inhibition of hepatosteatosis was verified by histological examination, and a liver transcriptome analysis was performed to elucidate the tilianin-induced hepatic transcriptional alterations. Effects of tilianin on the expression and function of LDLR were examined in HepG2 cells and ApoE-/- mice. Further mechanisms underlying the efficacy of tilianin were investigated in HepG2 cells. RESULTS: Tilianin treatment improved lipid profiles in C57BL/6 and dyslipidemic ApoE-/- mice, especially reducing the serum LDL-cholesterol (LDL-C) level. Significant reductions of atherosclerotic lesion area and hepatosteatosis were observed in tilianin-treated ApoE-/- mice. The altered gut microbial composition in tilianin groups was associated with lipid metabolism and atherosclerosis. The liver transcriptome revealed that tilianin regulated the transcription of lipid metabolism-related genes. Then both in vitro and in vivo analyses revealed the potent effect of tilianin to enhance hepatic LDLR expression and its mediated LDL-C uptake. Further studies confirmed a critical role of SREBP2 in hepatic LDLR up-regulation by tilianin via increasing precursor and thus mature nuclear SREBP2 level. CONCLUSION: This study demonstrated the lipid-lowering effect of tilianin through SREBP2-mediated transcriptional activation of LDLR. Our findings reveal a novel anti-atherosclerotic mechanism of tilianin and underlie its potential clinical use in modulating CVDs with good availability and affordability.


Subject(s)
Atherosclerosis , Receptors, LDL , Mice , Animals , Up-Regulation , Transcriptional Activation , Cholesterol, LDL , RNA, Ribosomal, 16S , Receptors, LDL/genetics , Receptors, LDL/metabolism , Mice, Inbred C57BL , Atherosclerosis/drug therapy , Atherosclerosis/metabolism , Flavonoids/pharmacology , Apolipoproteins E/genetics , Mice, Knockout
6.
J Asian Nat Prod Res ; 25(8): 796-802, 2023.
Article in English | MEDLINE | ID: mdl-36272140

ABSTRACT

In this paper, we present the discovery of a novel salicylic acid derivative, moldavica acid A (1), and a new natural dibenzo[b,f]oxepin, moldavica acid B (2), together with four known phenylpropionic acids (3-6) and protocatechuic acid (7) that were isolated from Dracocephalum moldavica L. Their structures were elucidated by comprehensive spectroscopic methods, including infrared and nuclear magnetic resonance. Compound 1 is the first example of salicylic acid linking a carboxylated α-pyrone via an ethyl bridge. Beyond expanding the knowledge of the chemical diversity of D. moldavica, both compounds 1 and 2 were shown to upregulate the expression of Kruppel-like factor 2, which could serve as a prospective therapeutic target for the treatment of atherosclerosis.

7.
Article in English | MEDLINE | ID: mdl-36573084

ABSTRACT

Proangiogenic treatment is a potential treatment for acute myocardial infarction (AMI). Morroniside was previously discovered to increase post-AMI angiogenesis in rats as well as the proliferation of rat coronary artery endothelial cells (RCAECs). However, the effects of morroniside on other endothelial cell (EC) functions and underlying mechanisms are unknown. To further clarify the vascular biological activity of morroniside, this work focused on investigating how morroniside influenced endothelial cell functions, such as cell viability, tube formation capacity, migration, and adhesion, and to explore the signaling pathway. Oxygen-glucose deprivation causes ischemic damage in RCAECs (OGD). In vitro investigations were carried out to explore the involvement of morroniside in EC function and pathways mediated by ephrinB. The results revealed that the number of BrdU+ cells and cell viability in the high-dose group were considerably greater than in the OGD group (P < 0.05). The ability of tube formation evaluated by total tube length, tube-like structural junction, and tube area was significantly higher in the morroniside group than in the OGD group (P < 0.001). Morroniside considerably improved migration and adhesion abilities compared to OGD group (P < 0.05, P < 0.01, P < 0.001). The protein expression levels of the ephrinB reverse signaling pathway were substantially greater in the morroniside group than in the OGD group (P < 0.05, P < 0.01). In conclusion, the current study demonstrated that morroniside modulates endothelial cell function via ephrinB reverse signaling pathways and provided a novel insight and therapeutic strategy into vascular biology.

8.
Int J Mol Sci ; 23(15)2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35955548

ABSTRACT

Heart failure (HF) is a clinical syndrome of cardiac insufficiency caused by abnormalities in cardiac structure and function that arise for various reasons, and it is the final stage of most cardiovascular diseases' progression. Total flavonoid extract from Dracocephalum moldavica L. (TFDM) has many pharmacological and biological roles, such as cardioprotective, neuroprotective, anti-atherogenic, antihypertensive, anti-diabetic, anti-inflammatory, antioxidant, etc. However, its effect on HF and its molecular mechanism are still unclear. In this study, we used systems pharmacology and an animal model of HF to investigate the cardioprotective effect of TFDM and its molecular mechanism. Eleven compounds in TFDM were obtained from the literature, and 114 overlapping genes related to TFDM and HF were collected from several databases. A PPI network and C-T network were established, and GO enrichment analysis and KEGG pathway analysis were performed. The top targets from the PPI network and C-T network were validated using molecular docking. The pharmacological activity was investigated in an HFpEF (heart failure with preserved ejection fraction) mouse model. This study shows that TFDM has a protective effect on HFpEF, and its protective mechanism may be related to the regulation of proinflammatory cytokines, apoptosis-related genes, fibrosis-related genes, etc. Collectively, this study offers new insights for researchers to understand the protective effect and mechanism of TFDM against HFpEF using a network pharmacology method and a murine model of HFpEF, which suggest that TFDM is a promising therapy for HFpEF in the clinic.


Subject(s)
Heart Failure , Lamiaceae , Animals , Anti-Inflammatory Agents/metabolism , Disease Models, Animal , Flavonoids/metabolism , Flavonoids/pharmacology , Flavonoids/therapeutic use , Heart Failure/metabolism , Lamiaceae/chemistry , Mice , Molecular Docking Simulation , Network Pharmacology , Stroke Volume
9.
Oxid Med Cell Longev ; 2021: 6673967, 2021.
Article in English | MEDLINE | ID: mdl-34527176

ABSTRACT

Vascular dementia (VaD) is a common cause of cognitive decline and dementia of vascular origin, but the precise pathological mechanisms are unknown, and so effective clinical treatments have not been established. Tilianin, the principal active compound of total flavonoid extract from Dracocephalum moldavica L., is a candidate therapy for cardio-cerebrovascular diseases in China. However, its potential in the treatment of VaD is unclear. The present study is aimed at investigating the protective effects of tilianin on VaD and exploring the underlying mechanism of the action. A model of VaD was established by permanent 2-vessel occlusion (2VO) in rats. Human neurons (hNCs) differentiated from human-induced pluripotent stem cells were used to establish an oxygen-glucose deprivation (OGD) model. The therapeutic effects and potential mechanisms of tilianin were identified using behavioral tests, histochemistry, and multiple molecular biology techniques such as Western blot analysis and gene silencing. The results demonstrated that tilianin modified spatial cognitive impairment, neurodegeneration, oxidation, and apoptosis in rats with VaD and protected hNCs against OGD by increasing cell viability and decreasing apoptosis rates. A study of the mechanism indicated that tilianin restored p-CaMKII/ERK1/2/CREB signaling in the hippocampus, maintaining hippocampus-independent memory. In addition, tilianin inhibited an ox-CaMKII/p38 MAPK/JNK/NF-κB associated inflammatory response caused by cerebral oxidative stress imbalance in rats with VaD. Furthermore, specific CaMKIIα siRNA action revealed that tilianin-exerted neuroprotection involved increase of neuronal viability, inhibition of apoptosis, and suppression of inflammation, which was dependent on CaMKIIα. In conclusion, the results suggested the neuroprotective effect of tilianin in VaD and the potential mechanism associated with dysfunction in the regulation of p-CaMKII-mediated long-term memory and oxidation and inflammation involved with ox-CaMKII, which may lay the foundation for clinical trials of tilianin for the treatment of VaD in the future.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Flavonoids/pharmacology , Glycosides/pharmacology , Neuroprotective Agents/pharmacology , Signal Transduction/drug effects , Animals , Apoptosis/drug effects , Calcium-Calmodulin-Dependent Protein Kinase Type 2/antagonists & inhibitors , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Cyclic AMP Response Element-Binding Protein/metabolism , Dementia, Vascular/drug therapy , Dementia, Vascular/metabolism , Disease Models, Animal , Extracellular Signal-Regulated MAP Kinases/metabolism , Flavonoids/chemistry , Flavonoids/therapeutic use , Glycosides/chemistry , Glycosides/therapeutic use , Hippocampus/metabolism , Humans , Lamiaceae/chemistry , Lamiaceae/metabolism , Male , Maze Learning/drug effects , NF-kappa B/metabolism , Neuroprotective Agents/chemistry , Neuroprotective Agents/therapeutic use , RNA Interference , RNA, Small Interfering/metabolism , Rats , Rats, Sprague-Dawley
10.
Biomed Res Int ; 2020: 5939715, 2020.
Article in English | MEDLINE | ID: mdl-33102583

ABSTRACT

Tilianin is a naturally occurring phenolic compound with a cardioprotective effect against myocardial ischemia/reperfusion injury (MIRI). The aim of our study was to determine the potential targets and mechanism of action of tilianin against cardiac injury induced by MIRI. An in silico docking model was used in this study for binding mode analysis between tilianin and Ca2+/calmodulin-dependent protein kinase II (CaMKII). Oxygen-glucose deprivation/reperfusion- (OGD/R-) injured H9c2 cardiomyocytes and ischemia/reperfusion- (I/R-) injured isolated rat hearts were developed as in vitro and ex vivo models, respectively, which were both treated with tilianin in the absence or presence of a specific CaMKII inhibitor KN93 for target verification and mechanistic exploration. Results demonstrated the ability of tilianin to facilitater the recovery of OGD/R-induced cardiomyocyte injury and the maintenance of cardiac function in I/R-injured hearts. Tilianin interacted with CaMKIIδ with an efficient binding performance, a favorable binding score, and restraining p-CaMKII and ox-CaMKII expression in cardiomyocytes injured by MIRI. Importantly, inhibition of CaMKII abolished tilianin-mediated recovery of OGD/R-induced cardiomyocyte injury and maintenance of cardiac function in I/R-injured hearts, accompanied by the disability to protect mitochondrial function. Furthermore, the protective effects of tilianin towards mitochondrion-associated proapoptotic and antiapoptotic protein counterbalance and c-Jun N-terminal kinase (JNK)/nuclear factor- (NF-) κB-related inflammation suppression were both abolished after pharmacological inhibition of CaMKII. Our investigation indicated that the inhibition of CaMKII-mediated mitochondrial apoptosis and JNK/NF-κB inflammation might be considered as a pivotal mechanism used by tilianin to exert its protective effects on MIRI cardiac damage.


Subject(s)
Apoptosis/drug effects , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Flavonoids/pharmacology , Glycosides/pharmacology , Inflammation/drug therapy , Myocardial Reperfusion Injury/drug therapy , Myocytes, Cardiac/drug effects , Protective Agents/pharmacology , Signal Transduction/drug effects , Animals , Cell Line , Inflammation/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Myocardial Reperfusion Injury/metabolism , Myocardium/metabolism , Myocytes, Cardiac/metabolism , NF-kappa B/metabolism , Rats
11.
Am J Transl Res ; 12(5): 1658-1671, 2020.
Article in English | MEDLINE | ID: mdl-32509167

ABSTRACT

Colorectal cancer is a common malignant tumor that seriously endangers human health. Harmine (HM), a natural product, has been shown to have a significant inhibitory effect on various cancers. However, systemic injection of HM can cause central nervous toxicity, which limits its clinical application. Local administration of HM overcomes this problem to a certain extent. In this study, we prepared an in situ thermosensitive HM gel preparation (HM gel), and used it to treat colon cancer with reduced toxic side effects and prolonged residence time of HM at the tumor site. We employed a central composite design and response surface methodology to optimize the formulation, and evaluated the physicochemical properties, rectal retention capacity, and in vitro and in vivo antitumor effects of HM gel on colon 26 tumor cells. The results showed that HM gel had a significant inhibitory effect on the growth of colon 26 cells in vitro. In an orthotopic tumor-bearing mouse model, HM gel exhibited an obvious inhibitory effect on tumor growth and metastasis, and significantly prolonged the survival period. In conclusion, HM gel exhibited significant anti-tumor effects on colon cancer, and therefore presents a promising formulation for the treatment of colorectal cancer.

12.
Biomed Chromatogr ; 34(8): e4865, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32330321

ABSTRACT

The aerial parts of Dracocephalum moldavica L. are extensively used in traditional ethnic medicines in China as a remedy for cardiovascular and cerebrovascular damage. However, the chemical composition and the accumulation of main secondary metabolites of D. moldavica in different natural environments remain unclear. This study aimed to conduct a qualitative and quantitative analysis of the main secondary metabolites to explore the quality variation of D. moldavica in markets. The evaluation of space-time accumulation of main secondary metabolites in D. moldavica was carried out during different growth periods and in different geographical locations. A total of 35 ingredients were detected and 24 identified, including 21 flavonoids, two phenolic acids and one coumarin by UPLC-QTOF-MS method. Furthermore, a simple and convenient HPLC method was successfully developed for the simultaneous determination of lutelin-7-O-glucuronide and tilianin and rosmarinic acid in D. moldavica. The results of space-time accumulation analysis showed the distinct variation of secondary metabolites of D. moldavica with the growth period and geographical location. Finally, the current study provided a meaningful and useful approach for comprehensively evaluating the quality of D. moldavica.


Subject(s)
Chromatography, High Pressure Liquid/methods , Lamiaceae/chemistry , Lamiaceae/metabolism , Mass Spectrometry/methods , Phytochemicals/analysis , Coumarins/analysis , Coumarins/chemistry , Coumarins/metabolism , Hydroxybenzoates/analysis , Hydroxybenzoates/chemistry , Hydroxybenzoates/metabolism , Limit of Detection , Linear Models , Phytochemicals/chemistry , Phytochemicals/metabolism , Plant Extracts/chemistry , Plant Structures/chemistry , Plant Structures/metabolism , Reproducibility of Results
13.
Article in English | MEDLINE | ID: mdl-32117796

ABSTRACT

Influenza A virus (IAV) is a threat to public health due to its high mutation rate and resistance to existing drugs. In this investigation, 15 targets selected from an influenza virus-host interaction network were successfully constructed as a multitarget virtual screening system for new drug discovery against IAV using Naïve Bayesian, recursive partitioning, and CDOCKER methods. The predictive accuracies of the models were evaluated using training sets and test sets. The system was then used to predict active constituents of Compound Yizhihao (CYZH), a Chinese medicinal compound used to treat influenza. Twenty-eight compounds with multitarget activities were selected for subsequent in vitro evaluation. Of the four compounds predicted to be active on neuraminidase (NA), chlorogenic acid, and orientin showed inhibitory activity in vitro. Linarin, sinensetin, cedar acid, isoliquiritigenin, sinigrin, luteolin, chlorogenic acid, orientin, epigoitrin, and rupestonic acid exhibited significant effects on TNF-α expression, which is almost consistent with predicted results. Results from a cytopathic effect (CPE) reduction assay revealed acacetin, indirubin, tryptanthrin, quercetin, luteolin, emodin, and apigenin had protective effects against wild-type strains of IAV. Quercetin, luteolin, and apigenin had good efficacy against resistant IAV strains in CPE reduction assays. Finally, with the aid of Gene Ontology biological process analysis, the potential mechanisms of CYZH action were revealed. In conclusion, a compound-protein interaction-prediction system was an efficient tool for the discovery of novel compounds against influenza, and the findings from CYZH provide important information for its usage and development.


Subject(s)
Antiviral Agents/pharmacology , Drug Discovery/methods , Drugs, Chinese Herbal/metabolism , Drugs, Chinese Herbal/pharmacology , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H3N2 Subtype/drug effects , A549 Cells , Animals , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Computer Simulation , Cytopathogenic Effect, Viral , Dogs , Drugs, Chinese Herbal/chemistry , Genes, Viral , Host-Pathogen Interactions , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/physiology , Influenza A Virus, H3N2 Subtype/growth & development , Influenza A Virus, H3N2 Subtype/physiology , Ligands , Madin Darby Canine Kidney Cells , Neuraminidase/antagonists & inhibitors , Quantitative Structure-Activity Relationship , Reassortant Viruses/drug effects , Tumor Necrosis Factor-alpha/metabolism , Viral Proteins/antagonists & inhibitors
14.
BMC Complement Med Ther ; 20(1): 78, 2020 Mar 12.
Article in English | MEDLINE | ID: mdl-32164676

ABSTRACT

BACKGROUND: The active components of Dracocephalum moldavica L. (TFDM) can inhibit myocardial ischemia by inhibiting oxidative stress. However, the effects of TFDM on astrocytes have not been investigated in vitro. The current study aimed to explore whether TFDM protects astrocytes against H2O2-induced apoptosis through a mitochondria-dependent pathway. METHODS: The human glioma cell line U87 was used to investigate the ability of TFDM to protect astrocytes against H2O2-induced apoptosis. The cell counting kit-8 assay and flow cytometry were used to detect cell viability, apoptosis, MMP, Ca2+ influx and reactive oxygen species (ROS). Lactate dehydrogenase (LDH) and malonic dialdehyde (MDA) levels were measured by ELISA. In addition, protein and mRNA expression changes were detected by Western blotting and qRT-PCR. RESULTS: TFDM (0.78~200 µg/ml) had limited cytotoxic effects on the viability of U87 cells. Compared with the model group (treated with H2O2 only), cells treated with medium- and high-dose TFDM exhibited reduced MDA concentrations (P < 0.05) and ROS production (P < 0.05) and decreased MMP (P < 0.05) and reduced apoptosis (P < 0.05). The percentage of annexin V-FITC-stained cells was markedly suppressed by TFDM, confirming its anti-apoptotic properties. WB results showed that protein expression of Bcl-2-associated X protein (BAX), Caspase-3, Caspase-9, Caspase-12, and B-cell leukemia/lymphoma 2 (Bcl2) was reduced in the TFDM group compared with that in the model group (P < 0.05) and that expression of these proteins was normalized by TFDM treatment in a dose-dependent manner. According to RT-qPCR results, TFDM pretreatment resulted in reduced mRNA expression of BAX, Caspase-9, Caspase-12, p38MAPK, and CaMKII and increased mRNA expression of mTOR compared with the model group. CONCLUSIONS: The current study revealed the protective effects of TFDM on U87 cells under oxidative stress conditions through the inhibition of a mitochondria-dependent pathway that is associated with the CaMKII/P38MAPK/ERK1/2 and PI3K/AKT/mTOR pathways.


Subject(s)
Apoptosis/drug effects , Astrocytes/drug effects , Flavones/pharmacology , Lamiaceae/chemistry , Mitochondria/drug effects , Oxidative Stress/drug effects , Cell Line, Tumor , Humans , Hydrogen Peroxide , Medicine, Chinese Traditional
15.
Front Pharmacol ; 11: 205, 2020.
Article in English | MEDLINE | ID: mdl-32194422

ABSTRACT

Human pharyngeal squamous cell carcinoma is highly invasive and proliferative, and exhibits an extremely low 5-year survival rate due to poor understanding of the underlying pathogenic mechanisms, and lack of efficient treatment. It has been shown that the immunosuppressive microenvironment created by tumor cells impairs the immune response against tumor progression, thereby affecting the prognosis for tumor patients. Thus, to improve therapeutic efficacy, it is critical to identify novel drugs with immunoinflammatory modulatory properties to treat tumor immune evasion. Tilianin, the main ingredient of total flavonoids extracted from Dracocephalum moldavica L., has multiple biological functions, including cardiovascular protective effects, anti-tumor effects, and anti-inflammatory effects. In the present study, the suppressive effects of tilianin on human pharyngeal squamous cell carcinoma were investigated and the underlying mechanisms in regulating the tumor immunosuppressive microenvironment were explored. The cytotoxicity of tilianin on FaDu cells was determined by CCK-8 and clone formation assays. Moreover, the levels of toll-like receptor 4 (TLR4) signaling transduction and apoptotic pathways were determined by immunocytochemical, biochemical, and molecular biological technologies. In addition, the maturation of dendritic cells (DCs) that were co-cultured in supernatant of FaDu cells was evaluated by flow cytometry to investigate alterations in immune system function. For mechanistic exploration, TLR4 siRNA, p38 siRNA, c-Jun N-terminal kinase (JNK) siRNA, and p65 siRNA were used as loss-of-function target evaluation of tilianin therapy. Combined, these results showed that tilianin treatment increased cytotoxicity as well as the apoptotic population of FaDu cells in a dose-dependent manner. Furthermore, tilianin treatment decreased the level of anti-apoptotic markers Bcl-2 and Bcl-xL, increased the level of apoptotic factors Bad and Bax, and stimulated cytochrome c release, caspase-3 and poly ADP ribose polymerase (PARP) activation in FaDu cells. Furthermore, our findings indicated that tilianin treatment activated TLR4/p38/JNK/NF-κB signaling pathways and increased the release of inflammatory cytokines. This promoted the maturation of DCs to enhance immune system function in the tumor microenvironment. Moreover, the effects of tilianin on immune system function were abolished by TLR4 siRNA and p65 siRNA. In conclusion, these findings suggested that tilianin may be of immunotherapeutic value for inhibiting human pharyngeal squamous cell carcinoma.

16.
Biochem Biophys Res Commun ; 519(2): 316-322, 2019 11 05.
Article in English | MEDLINE | ID: mdl-31506175

ABSTRACT

Tilianin (TIL) may prevent and treat myocardial ischemia reperfusion injuries. However, its oral administration is hampered by its low bioavailability. The present study aimed to formulate lipid-polymer hybrid nanoparticles (LPHNs) as carriers for the sustained release and oral bioavailability enhancement of TIL in vitro and in vivo. A nanodrug delivery system of TIL-loaded LPHNs (TIL-LPHNs) was constructed. TIL-LPHNs were prepared via a self-assembly method, and their particle size, polymer dispersity index (PDI), zeta potential, encapsulation efficiency (EE) and morphology were investigated. In addition, pharmacokinetic studies were performed in vivo. The TIL-LPHN formulation produced a spherical, homogeneous, smooth surface and multi-lamellar structured nanoparticles. The particle size and distribution profile of TIL-LPHNs had a mean particle diameter of 54.6 ±â€¯5.3 nm and PDI of 0.112 ±â€¯0.017. The zeta potential was -33.4 ±â€¯4.7 mV. The EE of TIL-LPHNs was 86.6 ±â€¯3.6%, which was determined with the dialysis method. The TIL-LPHNs significantly enhanced the oral bioavailability of TIL with a 3.7-fold increase in the area under the concentration-time curve in comparison with the TIL solution. These findings support the potential use of LPHNs in improving the stability and bioavailability of TIL via oral administration.


Subject(s)
Drug Delivery Systems , Flavonoids/metabolism , Glycosides/metabolism , Lipids/chemistry , Nanoparticles/chemistry , Polymers/chemistry , Administration, Oral , Animals , Biological Availability , Drug Liberation , Flavonoids/administration & dosage , Flavonoids/pharmacokinetics , Glycosides/administration & dosage , Glycosides/pharmacokinetics , Male , Rats , Rats, Sprague-Dawley
17.
Pharmazie ; 74(5): 265-269, 2019 05 01.
Article in English | MEDLINE | ID: mdl-31109395

ABSTRACT

A series of new matrinic derivatives with an 11-adamantyl group were designed, synthesized and evaluated for their anti-influenza A H3N2 activities, based on the privileged structure strategy.SAR analysis indicated that introduction of an 11-adamantyl by ester linker might be helpful for the activity. Among them, compound 7b exhibited promising anti-H3N2 activities with IC50 value of 5.14 µM, slightly better than that of amantadine. Its activity was further confirmed at the protein level. In primary mechanism, compound 7b could inhibit virus replication cycle at early stage by targeting M2 protein, consistent with that of amantadine. This study represents a successful application of combined strategy of privileged amantadine segment for further structural optimization and development of a new class of anti-influenza agents.


Subject(s)
Alkaloids/chemistry , Amantadine/analogs & derivatives , Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacology , Influenza A Virus, H3N2 Subtype/drug effects , Quinolizines/chemistry , Alkaloids/pharmacology , Animals , Humans , Influenza, Human/drug therapy , Influenza, Human/virology , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/virology , Quinolizines/pharmacology , Structure-Activity Relationship , Matrines
18.
J Pharmacol Sci ; 139(4): 352-360, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30910451

ABSTRACT

Mitochondrial energy metabolism and oxidative stress play a crucial role in ameliorating myocardial ischemia/reperfusion injury (MIRI). Tilianin has been reported to have a significant protection for mitochondrion in MIRI. However, the underlying mechanisms remain unknown. This study investigated whether Tilianin regulates mitochondrial energy metabolism and oxidative stress in MIRI via AMPK/SIRT1/PGC-1 alpha signaling pathway. The MIRI model was established by 30 min of coronary occlusion followed by 2 h of reperfusion in rats. The results revealed that Tilianin significantly reduced myocardial infarction, improved the pathological morphology of myocardium, markedly increased the contents of ATP and NAD+, decreased ADP and AMP contents and the ratio of AMP/ATP, reduced the level of ROS and MDA, enhanced SOD activity, evidently increased the levels of AMPK, SIRT1 and PGC-1 alpha mRNA, up-regulated the expressions of AMPK, pAMPK, SIRT1, PGC-1alpha, NRF1, TFAM and FOXO1 proteins. However, these effects were respectively abolished by Compound C (a specific AMPK inhibitor) and EX-527 (a specific SIRT1 inhibitor). Taken together, this study found that Tilianin could attenuate MIRI by improving mitochondrial energy metabolism and reducing oxidative stress via AMPK/SIRT1/PGC-1 alpha signaling pathway.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Energy Metabolism/drug effects , Flavonoids/pharmacology , Glycosides/pharmacology , Myocardial Ischemia/metabolism , Myocardial Reperfusion Injury/metabolism , Oxidative Stress/drug effects , Signal Transduction/drug effects , Animals , Disease Models, Animal , Flavonoids/therapeutic use , Glycosides/therapeutic use , Male , Mitochondria, Heart/metabolism , Myocardial Ischemia/drug therapy , Myocardial Reperfusion Injury/drug therapy , Myocardium/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Rats, Sprague-Dawley , Sirtuin 1/metabolism
19.
Org Lett ; 21(5): 1530-1533, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30785290

ABSTRACT

Isocoumarindole A (1), a novel polyketide synthetase-nonribosomal peptide synthetase (PKS-NRPS) hybrid metabolite, was isolated from the endolichenic fungus Aspergillus sp. CPCC 400810. The structure of isocoumarindole A (1) was featured by an unprecedented skeleton containing chlorinated isocoumarin and indole diketopiperazine alkaloid moieties linked by a carbon-carbon bond, which was determined by a combination of spectroscopic analyses, Marfey's method, and calculations of NMR chemical shifts, ECD spectra, and optical rotation values. Isocoumarindole A showed significant cytotoxicity and mild antifungal activities.


Subject(s)
Aspergillus/chemistry , Diketopiperazines/chemistry , Indole Alkaloids/chemistry , Indole Alkaloids/metabolism , Isocoumarins/chemistry , Isocoumarins/metabolism , Peptide Synthases/metabolism , Fungi , Halogenation , Indole Alkaloids/isolation & purification , Isocoumarins/isolation & purification , Molecular Structure , Peptide Synthases/chemistry
20.
Life Sci ; 216: 233-245, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30472297

ABSTRACT

AIMS: Tilianin, a naturally occurring flavonoid glycoside, possesses versatile biological activities including antioxidant, anti-inflammatory, energy collecting and anti-hypoxic effects. Little is known about the mechanisms underlying the effect of tilianin against ischemic injury in neuronal cells. We aimed to determine the potential targets and mechanisms of tilianin treatment behind the crosstalk pathways induced by oxygen-glucose deprivation (OGD). MAIN METHODS: We used an in silico docking model for interaction mode analysis and in vitro models for mechanistic exploration and target verification. Protein changes were measured using cellular immunofluorescence and ELISA techniques. KEY FINDINGS: The ability of tilianin to promote recovery of OGD-induced neurocytotoxic injury was demonstrated by maintenance of cell viability, membrane integrity and nuclear homogeneity. Tilianin treatment was also found to balance the concentrations of proapoptotic and antiapoptotic proteins that had been modified by OGD-induced mitochondrial dysfunction. Of these intersectional cascades, Ca2+/calmodulin-dependent protein kinase II (CaMKII) was found to bind efficiently with tilianin. This presented a certain binding score along with down-regulation of ox-CaMKII and p-CaMKII in SH-SY5Y cells affected by OGD. Importantly, after utilizing KN93, one specific CaMKII inhibitor, tilianin-mediated neuroprotection against OGD was abolished. This effect was accompanied by upregulation of mitochondrial function. Thus, the beneficial effects of tilianin toward mitochondrion-mediated apoptosis and p38/JNK/NF-κB-associated inflammatory pathways were reversed following CaMKII inhibition. SIGNIFICANCE: Our study indicated that attenuation of CaMKII-linked signaling mediated through mitochondria and p38/JNK/NF-κB inflammatory pathways is a key mechanism by which tilianin exerts its neuroprotective effects against cerebral ischemia.


Subject(s)
Brain Ischemia/prevention & control , Calcium-Calmodulin-Dependent Protein Kinase Type 2/antagonists & inhibitors , Flavonoids/pharmacology , Glycosides/pharmacology , Mitochondria/drug effects , Neuroprotective Agents/pharmacology , Apoptosis/drug effects , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Enzyme-Linked Immunosorbent Assay , Glucose/metabolism , Humans , MAP Kinase Signaling System/drug effects , Mitochondria/metabolism , Molecular Docking Simulation , NF-kappa B/metabolism , Oxygen/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...